Browse wiki

jump-to-nav Jump to: navigation, search
SE56:/MS01
MS Description The frozen tissues were homogenized in fiv The frozen tissues were homogenized in five volumes of 80% aqueous methanol containing 0.5 mg l)1 lidocaine and D-camphor sulfonic acid (Tokyo Kasei) using a mixer mill (MM 300, Retsch, http://www.retsch.com) with a zirconia bead for 6 min at 20 Hz. Following centrifugation of 15 000 g for 10 min and filtration.<br /><br /> <LC-ESI-MS><br /> The sample extracts (2 μl) were analyzed using an LC-MS system equipped with an electrospray ionization (ESI) interface (HPLC, Waters Acquity UPLC system; MS, Waters Q-Tof Premier, http://www.waters.com). The analytical conditions were as follows. HPLC: column, Acquity bridged ethyl hybrid (BEH) C18 (pore size 1.7 μm, length 2.1 · 100 mm, Waters); solvent system, acetonitrile (0.1% formic acid):water (0.1% formic acid); gradient program,1 : 99 v/v at 0 min, 1 : 99 v/v at 0.1 min, 99.5 : 0.5 at 15.5 min, 99.5 : 0.5 at 17.0 min, 1 : 99 v/v at 17.1 min and 1 : 99 at 20 min; flow rate, 0.3 ml min-1; temperature, 38℃; MS detection: capillary voltage, +3.0 keV; cone voltage, 22.5 V; source temperature, 120℃; desolvation temperature, 450℃; cone gas flow, 50 l h-1; desolvation gas flow, 800 l h-1; collision energy, 2 V; detection mode, scan (m/z 100–2000; dwell time 0.45 sec; interscan delay 0.05 sec, centroid). The scans were repeated for 19.5 min in a single run. The data were recorded using MASSLYNX version 4.1 software (Waters).<br /> <br /> <MS2T data acquisition by LC-Q-TOF-MS><br /> The sample extracts prepared by the method above (2 μl) were subjected to the same LC-Q-TOF-MS system operated under the same conditions mentioned above, except for the following changes: gradient program, 1 : 99 v/v at 0 min, 1 : 99 v/v at 0.2 min, 99.5 : 0.5 at 31 min, 99.5 : 0.5 at 34.0 min, 1 : 99 v/v at 34.2 min and 1 : 99 at 40 min; flow rate 0.15 ml min-1; survey detection mode for MS detection. In this mode, following acquisition of the MS spectrum (m/z 100–1000; dwell time 0.45 sec, inter-scan delay 0.05 sec), the MS/MS data of the most abundant ions were automatically obtained (m/z 50–1000; dwell time 2.5 sec; inter-scan delay 0.5 sec, data acquisition, centroid mode; collision energy ramped from 5 to 60 V). The mass/charge ratio (m/z) was calibrated using the lock-mass function with leucine enkephalin. The analyses were repeated 25 times by shifting the m/z ranges of the target ion selection window for the MS/MS analysis (m/z 100–160, 130–190, 160–220 … 880–940, 940–1000).The data were converted into ASCII format using DataBridge (Waters). The information in each MS/MS spectrum was formatted to the MS2T libraries using in-house Perl scripts. Low-intensity signals of fewer than 5 counts/sec were discarded in this process. The original retention time values were divided by two to compensate for the difference in peak elution conditions. the difference in peak elution conditions.
MS ID MS01  +
MS Instrument Waters Acquity UPLC system and Waters Q-Tof Premie  +
MS Instrument Type UPLC-QTOF-MS  +
MS Ion Mode Negative  +
MS Ionization ESI  +
MS Title Metabolic profiling analysis using LC-ESI-MS  +
Modification dateThis property is a special property in this wiki. 23 April 2018 10:04:02  +
hide properties that link here 
  No properties link to this page.
 

 

Enter the name of the page to start browsing from.
Personal tools
View and Edit Metadata
Variants
Views
Actions
Toolbox