SE137:/MS1
Sample Set Information
ID | SE137 |
---|---|
Title | Metabolite Signature during Short-Day Induced Growth Cessation in Populus. |
Description | The photoperiod is an important environmental signal for plants, and influences a wide range of physiological processes. For woody species in northern latitudes, cessation of growth is induced by short photoperiods. In many plant species, short photoperiods stop elongational growth after a few weeks. It is known that plant daylength detection is mediated by Phytochrome A (PHYA) in the woody hybrid aspen species. However, the mechanism of dormancy involving primary metabolism remains unclear. We studied changes in metabolite profiles in hybrid aspen leaves (young, middle, and mature leaves) during short-day-induced growth cessation, using a combination of gas chromatography–time-of-flight mass spectrometry, and multivariate projection methods. Our results indicate that the metabolite profiles in mature source leaves rapidly change when the photoperiod changes. In contrast, the differences in young sink leaves grown under long and short-day conditions are less distinct. We found short daylength induced growth cessation in aspen was associated with rapid changes in the distribution and levels of diverse primary metabolites. In addition, we conducted metabolite profiling of leaves of PHYA overexpressor (PHYAOX) and those of the control to find the discriminative metabolites between PHYAOX and the control under the short-day conditions. The metabolite changes observed in PHYAOX leaves, together with those in the source leaves, identified possible candidates for the metabolite signature (e.g., 2-oxo-glutarate, spermidine, putrescine, 4-amino-butyrate, and tryptophan) during short-day-induced growth cessation in aspen leaves. |
Authors | Kusano M, Jonsson P, Fukushima A, Gullberg J, Sjöström M, Trygg J, Moritz T. |
Reference | Front Plant Sci. 2011 Jul 12;2:29. doi: 10.3389/fpls.2011.00029. eCollection 2011. |
Comment |
Analytical Method Details Information
ID | MS1 |
---|---|
Title | GC-TOF MS |
Instrument | GC:Agilent 6890 MS:Pegasus III TOF-MS |
Instrument Type | |
Ionization | EI |
Ion Mode | Positive |
Description | Leaf samples were crushed, extracted, and their metabolite profiles were analyzed according to (Gullberg et al., 2004). Stable isotope reference compounds (15 ng μl−1 each of [13C3]-myristic acid, [13C4]-hexadecanoic acid, [2H4]-succinic acid, [13C5, 15N]-glutamic acid, [2H7]-cholesterol, [13C5]-proline, [13C4]-disodium α-ketoglutarate, [13C12]-sucrose, [2H4]-putrescine, [2H6]-salicylic acid, and [13C6]-glucose) were added to an extraction mixture of chloroform:MeOH:H2O (3:1:1). The samples (10 mg fresh weight each) were then extracted in 1 ml of the extraction mixture using a MM 301 Vibration Mill (Retsch GmbH & Co. KG, Haan, Germany) at a frequency of 30 Hz s−1 for 3 min using a 3-mm of tungsten carbide bead (Retsch GmbH & Co. KG, Haan, Germany) per tube to increase the extraction efficiency. After extraction samples were placed in an Eppendorf centrifuge (Model 5417C) for 10 min at 14,000 rpm. Following this, 200 μl of the supernatant was transferred to a GC-vial and evaporated to dryness. The samples were then derivatized by shaking them with 30 μl of methoxyamine hydrochloride (15 mg ml−1) in pyridine for 10 min at 5°C. Samples were then incubated overnight at room temperature. The samples were then trimethylsilylated by adding 30 μl of MSTFA with 1% TMCS and incubating for 1 h at room temperature. After silylation, 30 μl of heptane was added.
|
Comment_of_details |