SE183:/S1/M2/D1
Sample Set Information
ID | TSE1341 |
---|---|
Title | Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. |
Description | Because of ever-increasing environmental deterioration it is likely that the influx of UV-B radiation (280-320 nm) will increase as a result of the depletion of stratospheric ozone. Given this fact it is essential that we better understand both the rapid and the adaptive responses of plants to UV-B stress. Here, we compare the metabolic responses of wild-type Arabidopsis with that of mutants impaired in flavonoid (transparent testa 4, tt4; transparent testa 5, tt5) or sinapoyl-malate (sinapoylglucose accumulator 1, sng1) biosynthesis, exposed to a short 24-h or a longer 96-h exposure to this photo-oxidative stress. In control experiments we subjected the genotypes to long-day conditions as well as to 24- and 96-h treatments of continuous light. Following these treatments we evaluated the dynamic response of metabolites including flavonoids, sinapoyl-malate precursors and ascorbate, which are well known to play a role in cellular protection from UV-B stress, as well as a broader range of primary metabolites, in an attempt to more fully comprehend the metabolic shift following the cellular perception of this stress. Our data reveals that short-term responses occur only at the level of primary metabolites, suggesting that these effectively prime the cell to facilitate the later production of UV-B-absorbing secondary metabolites. The combined results of these studies together with transcript profiles using samples irradiated by 24-h UV-B light are discussed in the context of current models concerning the metabolic response of plants to the stress imposed by excessive UV-B irradiation. |
Authors | Kusano, M., Tohge, T., Fukushima, A., Kobayashi, M., Hayashi, N., Otsuki, H., Kondou, Y., Goto, H.,Kawashima, M., Matsuda, F., Niida, R., Matsui, M., Saito, K. and Fernie, A. R. |
Reference | Plant J. 2011 Jul;67(2):354-69. doi: 10.1111/j.1365-313X.2011.04599.x |
Comment |
Sample Information
ID | S1 |
---|---|
Title | Arabidopsis thaliana |
Organism - Scientific Name | Arabidopsis thaliana |
Organism - ID | NCBI taxonomy:3702 |
Compound - ID | |
Compound - Source | |
Preparation | BioSource Species: Arabidopsis thaliana L. cv. Columbia ecotype 0 (wild-type) Genotype: Wild-type, transparent-testa-4 [tt4] (Shikazono et al., 2001), transparent-testa-5 [tt5] (SALK_034145) and sinapoylglucose-accumulator-1 [sng1] (Lorenzen et al., 1996) in Col-0 background |
Sample Preparation Details ID | |
Comment |
Analytical Method Information
ID | M2 |
---|---|
Title | LC-q-TOF-MS |
Method Details ID | MS2 |
Sample Amount | equivalence of 300 μg FW of the samples |
Comment |
Analytical Method Details Information
ID | MS2 |
---|---|
Title | LC-q-TOF-MS |
Instrument | HPLC, Waters Acquity UPLC system; MS, Waters Q-Tof Premier |
Instrument Type | UPLC-QTOF-MS |
Ionization | ESI |
Ion Mode | positive and negative |
Description | BioSource amount: The harvested samples were weighed and then each biological sample was put in a 2-ml tube with 5 mm Zirconia beads to be used for metabolite profiling. |
Comment_of_details |
Data Analysis Information
ID | D1 |
---|---|
Title | Data Processing (LC-q-TOF-MS) |
Data Analysis Details ID | DS2 |
Recommended decimal places of m/z | |
Comment |
Data Analysis Details Information
ID | DS2 |
---|---|
Title | Data processing (LC-q-TOF-MS) |
Description | Data processing for LC-q-TOF-MS data: The profiling data files recorded in the MassLynx format (raw) were converted to the NetCDF format using the DataBridge function of MassLynx 4.1 (Waters). From the set of NetCDF data files, the data matrix was generated using the MetAlign software (De Vos et al., 2007). By using this procedure, the data matrixes with unit mass data were generated. The data matrices were processed using in-house software written in Perl/Tk (Matsuda et al., 2009). The original peak intensity values were divided with that of the internal standards (lidocaine at m/z 235 [M + H]+ and (–)-camphor-10-sulfonic acid at m/z 231 [M – H]– for the positive and negative ion modes, respectively) determined in the same samples to normalize the peak intensity values among the metabolic profile data. |
Comment_of_details |