SE162:/S1/M1
Sample Set Information
ID | TSE1323 |
---|---|
Title | A U-system approach for predicting metabolic behaviors and responses based on an alleged metabolic reaction network. |
Description | Background Progress in systems biology offers sophisticated approaches toward a comprehensive understanding of biological systems. Yet, computational analyses are held back due to difficulties in determining suitable model parameter values from experimental data which naturally are subject to biological fluctuations. The data may also be corrupted by experimental uncertainties and sometimes do not contain all information regarding variables that cannot be measured for technical reasons. |
Authors | Sriyudthsak K, Sawada Y, Chiba Y, Yamashita Y, Kanaya S, Onouchi H, Fujiwara T, Naito S, Voit EO, Shiraishi F, Hirai MY. |
Reference | BMC Syst Biol. 2014;8 Suppl 5:S4. doi: 10.1186/1752-0509-8-S5-S4. Epub 2014 Dec 12. |
Comment |
Sample Information
ID | S1 |
---|---|
Title | Arabidopsis callus |
Organism - Scientific Name | Arabidopsis thaliana |
Organism - ID | NCBI taxonomy:3702 |
Compound - ID | |
Compound - Source | |
Preparation | Arabidopsis thaliana liquid callus culture derived from accession Col-0 was prepared as described in Murota et al. with slight modifications. For callus induction, minced seedlings were incubated in RM28 medium under constant light. The medium was changed every 6 days. For a metabolic perturbation experiment, RM28 medium supplemented with 10 mM L-lysine and 1 mM L-threonine was used at the third medium change. For a control experiment, RM28 without supplementation was used. Sucrose in RM28 medium was a sole carbon source for callus culture. The experiments were carried out in triplicate.
For both metabolome and amino acid analyses, calli were collected prior to lysine and threonine treatment (0 h), and 2, 6, 12, 24, 36, 48, 60, 72, 84 and 96 h after the treatment. The calli were immediately frozen in liquid nitrogen and stored at -80°C. Prior to analyses, the frozen samples were lyophilized using a freeze dryer (FDU-2100, EYELA) in a vacuum. |
Sample Preparation Details ID | |
Comment |
Analytical Method Information
ID | M1 |
---|---|
Title | Metabolome analysis (LC-MS) |
Method Details ID | MS1 |
Sample Amount | 1 μL |
Comment |
Analytical Method Details Information
ID | MS1 |
---|---|
Title | Metabolome analysis (LC-MS) |
Instrument | UPLC-TQD system (Waters) |
Instrument Type | UPLC-QTOF-MS |
Ionization | ESI |
Ion Mode | positive and negative |
Description | Metabolites were extracted by homogenizing lyophilized callus in 500 uL 80% methanol in 0.1% formic acid per 2 mg dry weight callus with 5 mm zirconia beads (no.5-4060-13, AS ONE Co. Ltd.) in 2.0 mL sampling tubes (no.132-620C, WATSON Co., LTD) for 5 min using shake master NEO (Bio Medical Science, Tokyo, Japan). After centrifugation using a high speed refrigerated micro centrifuge (TOMY MX-300) at 14,000 r.p.m. at 4°C, 250 uL supernatant was dried up in 96 well plate and the residue was dissolved in 120 uL ultrapure water (no. 210-01303, Wako Pure Chemical Industries, Ltd.). One uL of the solution was subjected to widely targeted metabolome analysis by LC-MS using UPLC-TQD system (Waters, Milford, MA, USA). |
Comment_of_details |