SE184:/DS1
From Metabolonote
Sample Set Information
ID | TSE1342 |
---|---|
Title | Wax ester and lipophilic compound profiling of Euglena gracilis by gas chromatography-mass spectrometry: toward understanding of wax ester fermentation under hypoxia |
Description | Lipids are being increasingly used as biodiesel feedstock, and several saturated wax esters from Euglena gracilis are candidates for outdoor bulk production. Wax ester fermentation in Euglena is strongly increased by hypoxia, but key events underlying the metabolic shift toward wax ester biosynthesis are poorly understood. Profiling of wax esters and other lipophilic compounds is the first step for research toward the clarification of wax ester fermentation molecular mechanisms, and thus, a simple and comprehensive platform for their profiling is required. In this study, we established a profiling method for wax esters and lipophilic compounds in Euglena using gas chromatography-mass spectrometry (GC–MS). Using this method, we compared accumulation profiles of wax esters and lipophilic compounds between a wild-type Euglena Z strain and a bleached SM-ZK strain. Both the wild-type and the bleached strains contained C14:0 fatty acid-C14:0 fatty alcohol as a dominant wax ester. Wax ester fermentation initiated 4 h after the cessation of oxygen supply by halting the culture agitation resulting in linear increase and proportional changes of wax ester amounts during 24 h. However, complete anoxia by nitrogen gas aeration inhibited wax ester production and the addition of bicarbonates reversed the inhibition, suggesting that there is a need for an additional carbon source for wax ester fermentation under anoxia. Our simple method enables the investigation of metabolic responses leading to wax ester fermentation in Euglena. |
Authors | Furuhashi, T., Ogawa, T., Nakai, R., Nakazawa, M., Okazawa, A., Padermschoke, A., Nishio, K., Hirai, M.Y., Arita, M. and Ohta, D. |
Reference | Metabolomics, February 2015, Volume 11, Issue 1, pp 175–183 |
Comment |
Data Analysis Details Information
ID | DS1 |
---|---|
Title | Data analysis |
Description | Metabolites were identified based on their mass spectral characteristics and retention times by comparison with retention times of reference compounds in an in-house reference library. All metabolites were quantified using QuanLynx (Waters, Milford, MA, USA), a software for the analysis of mass spectrometric data (Supplement Table 1). All statistical analysis, PCA and t-tests were performed using Microsoft Excel Macro (p < 0.01). All raw data and a list of wax esters and phenodata information are available at MetaboLight (https://www.ebi.ac.uk/metabolights/). |
Comment_of_details |